Q. (i) Consider a thin lens placed between a source (35) and an observer (0)
2
(Figure). Let the thickness of the lens vary as w(b) = w, - %, where b

is the verticle distance from the pole, w, is a constant. Using Fermat’s
principle i.e., the time of transit for a ray between the source and
observer is an extremum find the condition that all paraxial rays
starting from the source will converge at a point 0 on the axis. Find

the focal length.
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(ii) A gravitational lens may be assumed to have a varying width of the

form
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Show that an observer will see an image of a point object as a ring
about the centre of the lens with an angular radius
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Ans. (i) The time elapsed to travel from S to P, is

1 = SP  Ju? + b2
.= b ol

c c

1b°
or 1+ — — |assuming b<<u,
cl 242

The time required to travel from P, 1o O is

The time required to travel through the lens is
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where n is the refractive index.

Thus, the total time is
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Fermet's principle gives the time taken should be minimum
For that first derivative should be zero
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Thus, a convergent lens is formed if oo = 2(n — 1)D. This is independant of and hence. all
paraxial rays from S will converge at O i.e., for rays

and (b<<v)

Since, 11, 1, the focal length is D.
D u v

(i) In this case. differentiating expression of time takent wrt b
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Thus all rays passing at a height b shall contribute to the image The ray paths make an

angle
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This is the required expression.



